

Global Observations of SO₂ from Aura/OMI: Latest Product Updates and *Science Analyses*

Can Li^{1,2}, Nick Krotkov², Joanna Joiner², Simon Carn³, Yan Zhang^{1,2}, Peter Leonard⁴, Chris McLinden⁵, Vitali Fioletov⁵

¹UMD/ESSIC, ²NASA/GSFC, ³Michigan Tech., ⁴ADNET, ⁵Environ. Canada

Aura Science Team Meeting
August 29, 2019

NAME Updates in the New Version OMI Anthropogenic SO₂ Product

- New data prescreening scheme:
 - To exclude large volcanic signals and reduce their impacts on PCA;
- Updated <u>spectral fitting</u> scheme:
 - To reduce noise over areas affected by the South Atlantic Anomaly (SAA);
- New SO₂ Jacobians Lookup Table:
 - To better account for the effects of geometry, O₃, cloudiness, surface reflectivity *etc.*;
- New <u>a priori</u> profiles based on GEOS-5 simulations:
 - More realistic than the previous assumption with fixed PBL profile everywhere;
- Enhanced <u>retrievals over snow/ice</u>:
 - Use Raman cloud product to identify cloud-free pixels covered by snow/ice;
 - Use scene reflectivity in calculations of Jacobians.

Monthly Mean SO₂ VCD, July 2007

- ✓ For the same PBL SO₂
 Jacobians (AMF), results are similar, except for areas affected by South Atlantic Anomaly (SAA);
- ✓ New SO₂ Jacobians and a priori profiles significantly further reduce retrieval artifacts.

China's

snarl transportation,

Revisiting the 2008 Snow Storm in China

"China's worst snowstorms in nearly 50 years" – from USDA Commodity Intelligence Report, February 1, 2008

Significantly higher apparent SO₂ signals after the snow storm (old PBL SO₂ product).

Revisiting the 2008 Snow Storm in China

Snow/ice enhances nearsurface SO₂ signals, allowing sources along Yellow River, and Hexi Corridor to be more readily identified, as compared with snow-free pixels.

Extended Coverage: Insights into Transport to the Arctic

- Highly reflective snow/ice covered surface also enhances sensitivity to SO₂, even at large solar zenith angles (SZA);
- For the case study here, retrievals are extended to SZA < 81° for near nadir pixels;
- Updated retrievals over snow/ice capture SO₂ plumes from large sources in high-latitude areas (such as Norilsk) on a daily basis potentially contribute to Arctic haze.

A Case of Transport to the Arctic (April 2, 2007)

- Model underestimates SO₂ transport from Norilsk ("missing source"!).
- Combined OMI/CALIPSO analysis may help to evaluate gas-to-particle conversion in model during transport.

Courtesy:
J. Liu@GSFC/USRA

Status and Next Steps

- Data production ongoing (to be finished in the next few weeks).
- Public release of the new OMSO2 product expected in the next 1-2 months (after data production and quality check).